Search results
Results from the WOW.Com Content Network
The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs ...
Pages in category "Graph products" The following 12 pages are in this category, out of 12 total. ... Strong product of graphs; T. Tensor product of graphs; V. Vizing ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
lexicographic graph product (or graph composition): it is an associative (for unlabelled graphs) and non-commutative operation, [2] strong graph product: it is a commutative and associative operation (for unlabelled graphs), tensor graph product (or direct graph product, categorical graph product, cardinal graph product, Kronecker graph product ...
In graph theory, the Shannon capacity of a graph is a graph invariant defined from the number of independent sets of strong graph products. It is named after American mathematician Claude Shannon . It measures the Shannon capacity of a communications channel defined from the graph, and is upper bounded by the Lovász number , which can be ...
The tensor product of graphs. In graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and; vertices (g,h) and (g',h' ) are adjacent in G × H if and only if. g is adjacent to g' in G, and; h is adjacent to h' in H.
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The yellow directed acyclic graph is the condensation of the blue directed graph. It is formed by contracting each strongly connected component of the blue graph into a single yellow vertex. If each strongly connected component is contracted to a single vertex, the resulting graph is a directed acyclic graph, the condensation of G.