enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Case 5: two angles and an opposite side given (AAS). The sine rule gives b and then we have Case 7 (rotated). There are either one or two solutions. Case 6: three angles given (AAA). The supplemental cosine rule may be used to give the sides a, b, and c but, to avoid ambiguities, the half-side formulae are preferred.

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 ...

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  6. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In spherical trigonometry, the law of cosines and derived identities such as Napier's analogies have precise duals swapping central angles measuring the sides and dihedral angles at the vertices. In the infinitesimal limit, the law of cosines for sides reduces to the planar law of cosines and two of Napier's analogies reduce to Mollweide's ...

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33] These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known.

  8. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  9. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    This converse appears in Euclid's Elements (Book I, Proposition 48): "If in a triangle the square on one of the sides equals the sum of the squares on the remaining two sides of the triangle, then the angle contained by the remaining two sides of the triangle is right." [26] It can be proved using the law of cosines or as follows: