Search results
Results from the WOW.Com Content Network
In some fish, capillary blood flows in the opposite direction to the water, causing countercurrent exchange. The muscles on the sides of the pharynx push the oxygen-depleted water out the gill openings. In bony fish, the pumping of oxygen-poor water is aided by a bone that surrounds the gills called the operculum. [6]
The spiracle is often located towards the top of the animal allowing breathing even while the animal is mostly buried under sediments. [5] As sharks adapted a faster moving lifestyle some became obligate ram ventilators , breathing exclusively by forcing water through their gills by swimming; among these are requiem sharks and hammerhead sharks ...
The shared trait of breathing via gills in bony fish and cartilaginous fish is a famous example of symplesiomorphy. Bony fish are more closely related to terrestrial vertebrates, which evolved out of a clade of bony fishes that breathe through their skin or lungs, than they are to the sharks, rays, and the other cartilaginous fish. Their kind ...
Branchial arches or gill arches are a series of paired bony/cartilaginous "loops" behind the throat (pharyngeal cavity) of fish, which support the fish gills. As chordates, all vertebrate embryos develop pharyngeal arches, though the eventual fate of these arches varies between taxa.
Many bony fishes have an internal organ called a swim bladder, or gas bladder, that adjusts their buoyancy through manipulation of gases. In this way, fish can stay at the current water depth, or ascend or descend without having to waste energy in swimming. The bladder is only found in bony fishes.
Osteichthyes (/ ˌ ɒ s t iː ˈ ɪ k θ iː z / ost-ee-IK-theez), [2] also known as osteichthyans or commonly referred to as the bony fish, is a diverse superclass of vertebrate animals that have endoskeletons primarily composed of bone tissue.
The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ in bony fish (but not cartilaginous fish [1]) that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, which expends more energy. [2]
Lungfish are freshwater vertebrates belonging to the class Dipnoi. [1] Lungfish are best known for retaining ancestral characteristics within the Osteichthyes, including the ability to breathe air, and ancestral structures within Sarcopterygii, including the presence of lobed fins with a well-developed internal skeleton.