Search results
Results from the WOW.Com Content Network
A queue has two ends, the top, which is the only position at which the push operation may occur, and the bottom, which is the only position at which the pop operation may occur. A queue may be implemented as circular buffers and linked lists, or by using both the stack pointer and the base pointer.
Double-ended queues can also be implemented as a purely functional data structure. [3]: 115 Two versions of the implementation exist. The first one, called 'real-time deque, is presented below. It allows the queue to be persistent with operations in O(1) worst-case time, but requires lazy lists with memoization. The second one, with no lazy ...
A van Emde Boas tree (Dutch pronunciation: [vɑn ˈɛmdə ˈboːɑs]), also known as a vEB tree or van Emde Boas priority queue, is a tree data structure which implements an associative array with m-bit integer keys. It was invented by a team led by Dutch computer scientist Peter van Emde Boas in 1975. [1]
While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
The best you can do is (in case of array implementation) simply concatenating the two heap arrays and build a heap of the result. [13] A heap on n elements can be merged with a heap on k elements using O(log n log k) key comparisons, or, in case of a pointer-based implementation, in O(log n log k) time. [14]
Implementing a DEPQ using interval heap. Apart from the above-mentioned correspondence methods, DEPQ's can be obtained efficiently using interval heaps. [6] An interval heap is like an embedded min-max heap in which each node contains two elements. It is a complete binary tree in which: [6] The left element is less than or equal to the right ...
In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees.It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap.
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.