Search results
Results from the WOW.Com Content Network
The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action.
Walter Hans Schottky (23 July 1886 – 4 March 1976) was a German physicist who played a major early role in developing the theory of electron and ion emission phenomena, [2] invented the screen-grid vacuum tube in 1915 while working at Siemens, [3] co-invented the ribbon microphone and ribbon loudspeaker along with Dr. Erwin Gerlach in 1924 [4] and later made many significant contributions in ...
This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [43] [44] A typical example is the 1N914.
The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. [ 23 ] [ 24 ] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [ 25 ]
A Schottky diode is a single metal–semiconductor junction, used for its rectifying properties. Schottky diodes are often the most suitable kind of diode when a low forward voltage drop is desired, such as in a high-efficiency DC power supply. Also, because of their majority-carrier conduction mechanism, Schottky diodes can achieve greater ...
The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Kahng and Atalla during 1960–1961. [7] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [8]
In modern sets, a semiconductor diode is used for the detector, which is much more reliable than a crystal detector and requires no adjustments. [48] [81] [98] Germanium diodes (or sometimes Schottky diodes) are used instead of silicon diodes, because their lower forward voltage drop (roughly 0.3 V compared to 0.6 V [99]) makes them more sensitive.
The German physicist Walter H. Schottky formulated a theory predicting the Schottky effect, which led to the Schottky diode and later Schottky transistors. For the same power dissipation, Schottky transistors have a faster switching speed than conventional transistors because the Schottky diode prevents the transistor from saturating and ...