Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version ... a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which ... Notes A D G AA 0 ...
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [ 3 ] [ 4 ] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.
Download as PDF; Printable version; ... is a continuous-time Markov chain [clarification needed] ... Notes This page was last edited ...
The mixing time of a Markov chain is the number of steps needed for this convergence to happen, to a suitable degree of accuracy. A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains ...
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.