enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In this Boolean algebra, union can be expressed in terms of intersection and complementation by the formula = (), where the superscript denotes the complement in the universal set ⁠ ⁠. Alternatively, intersection can be expressed in terms of union and complementation in a similar way: A ∩ B = ( A ∁ ∪ B ∁ ) ∁ {\displaystyle A\cap B ...

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The union and intersection of sets may be seen as analogous to the addition and multiplication of numbers. Like addition and multiplication, the operations of union and intersection are commutative and associative, and intersection distributes over union. However, unlike addition and multiplication, union also distributes over intersection.

  4. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  6. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof , but can be derived from a small number of properties taken as axioms .

  7. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...

  8. Ring of sets - Wikipedia

    en.wikipedia.org/wiki/Ring_of_sets

    A family of sets closed under union and relative complement is also closed under symmetric difference and intersection. Conversely, every family of sets closed under both symmetric difference and intersection is also closed under union and relative complement. This is due to the identities

  9. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...