Ad
related to: laser pulse width
Search results
Results from the WOW.Com Content Network
Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. [1] This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.
Using this equation, the minimum pulse duration can be calculated consistent with the measured laser spectral width. For the HeNe laser with a 1.5 GHz bandwidth, the shortest Gaussian pulse consistent with this spectral width is around 300 picoseconds; for the 128 THz bandwidth Ti:sapphire laser, this spectral width corresponds to a pulse of ...
Laser linewidth from high-power high-gain pulsed laser oscillators, comprising line narrowing optics, is a function of the geometrical and dispersive features of the laser cavity. [29] To a first approximation the laser linewidth, in an optimized cavity, is directly proportional to the beam divergence of the emission multiplied by the inverse ...
Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent; that is, the pulses (and not just their envelopes) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
Q-switching, sometimes known as giant pulse formation or Q-spoiling, [1] is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode.
For a Gaussian time profile, the autocorrelation width is longer than the width of the intensity, and it is 1.54 longer in the case of a hyperbolic secant squared (sech 2) pulse. This numerical factor, which depends on the shape of the pulse, is sometimes called the deconvolution factor. If this factor is known, or assumed, the time duration ...
Pulse width is an important measure in radar systems. Radars transmit pulses of radio frequency energy out of an antenna and then listen for their reflection off of target objects. The amount of energy that is returned to the radar receiver is a function of the peak energy of the pulse, the pulse width, and the pulse repetition frequency.
Retrieval of the pulse from its FROG trace is accomplished by using a two-dimensional phase-retrieval algorithm. FROG is currently the standard technique for measuring ultrashort laser pulses replacing an older method called autocorrelation, which only gave a rough estimate for the pulse length. FROG is simply a spectrally resolved ...
Ad
related to: laser pulse width