Search results
Results from the WOW.Com Content Network
conversion factor/N⋅m combinations Industrial: SI: Newton-metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-metre: kgm kg·m 9.80665 Imperial & US customary: pound-foot: lbft lb⋅ft Pound-inch (lb.in) is also available 1.3558 Scientific: SI: newton metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-force metre: kgf.m kgf ...
A pound-foot (lb⋅ft), abbreviated from pound-force foot (lbf · ft), is a unit of torque representing one pound of force acting at a perpendicular distance of one foot from a pivot point. [2] Conversely one foot pound-force (ft · lbf) is the moment about an axis that applies one pound-force at a radius of one foot.
In the US, torque is most commonly referred to as the foot-pound (denoted as either lb-ft or ft-lb) and the inch-pound (denoted as in-lb). [ 17 ] [ 18 ] Practitioners depend on context and the hyphen in the abbreviation to know that these refer to torque and not to energy or moment of mass (as the symbolism ft-lb would properly imply).
The foot-pound force (symbol: ft⋅lbf, [1] ft⋅lb f, [2] or ft⋅lb [3]) is a unit of work or energy in the engineering and gravitational systems in United States customary and imperial units of measure. It is the energy transferred upon applying a force of one pound-force (lbf) through a linear displacement of one foot.
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI).
pound (avoirdupois) per cubic foot lb/ft 3: ≡ lb/ft 3: ≈ 16.018 463 37 kg/m 3: pound (avoirdupois) per cubic inch lb/in 3: ≡ lb/in 3: ≈ 2.767 990 471 × 10 4 kg/m 3: pound (avoirdupois) per gallon (imperial) lb/gal ≡ lb/gal ≈ 99.776 372 66 kg/m 3: pound (avoirdupois) per gallon (US fluid) lb/gal ≡ lb/gal ≈ 119.826 4273 kg/m 3 ...
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2).