enow.com Web Search

  1. Ads

    related to: inequalities and interval notation worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠. Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities ...

  3. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.

  4. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  5. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    This is a generalization of the above inequalities, as M(b − a) is the integral of the constant function with value M over [a, b]. In addition, if the inequality between functions is strict, then the inequality between integrals is also strict.

  7. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality In mathematics , Jensen's inequality , named after the Danish mathematician Johan Jensen , relates the value of a convex function of an integral to the integral of the convex function.

  1. Ads

    related to: inequalities and interval notation worksheet