enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    The Weibull distribution (usually sufficient in reliability engineering) is a special case of the three parameter exponentiated Weibull distribution where the additional exponent equals 1. The exponentiated Weibull distribution accommodates unimodal, bathtub shaped [33] and monotone failure rates.

  3. Exponentiated Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentiated_Weibull...

    They showed that the exponentiated Weibull distribution has increasing, decreasing, bathtub, and unimodal hazard rates. The exponentiated exponential distribution proposed by Gupta and Kundu (1999, 2001) is a special case of the exponentiated Weibull family. Later, the moments of the EW distribution were derived by Choudhury (2005).

  4. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  5. Survival function - Wikipedia

    en.wikipedia.org/wiki/Survival_function

    In the four survival function graphs shown above, the shape of the survival function is defined by a particular probability distribution: survival function 1 is defined by an exponential distribution, 2 is defined by a Weibull distribution, 3 is defined by a log-logistic distribution, and 4 is defined by another Weibull distribution.

  6. Generalized extreme value distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_extreme_value...

    In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.

  7. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  8. Rayleigh distribution - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_distribution

    Hence, the above formula can be used to estimate the noise variance in an MRI image from background data. [7] [8] The Rayleigh distribution was also employed in the field of nutrition for linking dietary nutrient levels and human and animal responses. In this way, the parameter σ may be used to calculate nutrient response relationship. [9]

  9. Weibull modulus - Wikipedia

    en.wikipedia.org/wiki/Weibull_modulus

    The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values.