Search results
Results from the WOW.Com Content Network
In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1]
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Departure functions are used to calculate real fluid extensive properties (i.e. properties which are computed as a difference between two states). A departure function gives the difference between the real state, at a finite volume or non-zero pressure and temperature, and the ideal state, usually at zero pressure or infinite volume and ...
For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation: d R R = α d T {\displaystyle {\frac {dR}{R}}=\alpha \,dT} Here α has the dimension of an inverse temperature and can be expressed e.g. in 1/K or K −1 .
Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]
The other fluid would change temperature more slowly along the heat exchanger length. The method, at this point, is concerned only with the fluid undergoing the maximum temperature change. The effectiveness of the heat exchanger ( ϵ {\displaystyle \epsilon } ) , is the ratio between the actual heat transfer rate and the maximum possible heat ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.