enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  3. Neuroph - Wikipedia

    en.wikipedia.org/wiki/Neuroph

    Neuroph is an object-oriented artificial neural network framework written in Java. It can be used to create and train neural networks in Java programs. Neuroph provides Java class library as well as GUI tool easyNeurons for creating and training neural networks. It is an open-source project hosted at SourceForge under the Apache License.

  4. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state.

  5. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.) A layer in a deep learning model is a structure or network topology in the model's architecture, which takes information from the previous layers and ...

  6. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  7. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Folding activation functions are extensively used in the pooling layers in convolutional neural networks, and in output layers of multiclass classification networks. These activations perform aggregation over the inputs, such as taking the mean, minimum or maximum. In multiclass classification the softmax activation is often used.

  8. Multilayer perceptrons - Wikipedia

    en.wikipedia.org/?title=Multilayer_perceptrons&...

    This page was last edited on 10 August 2023, at 11:09 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...

  9. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...