enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3] Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant ...

  3. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The phenotype of a homozygous dominant pair is 'A', or dominant, while the opposite is true for homozygous recessive. Heterozygous pairs always have a dominant phenotype. [ 11 ] To a lesser degree, hemizygosity [ 12 ] and nullizygosity [ 13 ] can also be seen in gene pairs.

  4. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  5. Three-point cross - Wikipedia

    en.wikipedia.org/wiki/Three-point_cross

    An individual heterozygous for three mutations is crossed with a homozygous recessive individual, and the phenotypes of the progeny are scored. The two most common phenotypes that result are the parental gametes; the two least common phenotypes that result come from a double crossover in gamete formation. By comparing the parental and double ...

  6. Hereditary carrier - Wikipedia

    en.wikipedia.org/wiki/Hereditary_carrier

    Punnett square: If the other parent does not have the recessive genetic disposition, it does not appear in the phenotype of the children, but on the average 50% of them become carriers. A hereditary carrier ( genetic carrier or just carrier ), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation ...

  7. Classical genetics - Wikipedia

    en.wikipedia.org/wiki/Classical_genetics

    The alleles of genes can either be dominant or recessive. A dominant allele needs only one copy to be expressed while a recessive allele needs two copies (homozygous) in a diploid organism to be expressed. Dominant and recessive alleles help to determine the offspring's genotypes, and therefore phenotypes. [citation needed]

  8. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    An individual that is homozygous-recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the ...

  9. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    Finally, the offspring could inherit a recessive allele from each parent, making them homozygous with a genotype of bb. Plants with the BB and Bb genotypes will look the same, since the B allele is dominant. The plant with the bb genotype will have the recessive trait.