Search results
Results from the WOW.Com Content Network
The concept of unit circle (the set of all vectors of norm 1) is different in different norms: for the 1-norm, the unit circle is a square oriented as a diamond; for the 2-norm (Euclidean norm), it is the well-known unit circle; while for the infinity norm, it is an axis-aligned square.
This is a different norm from the induced p-norm (see above) and the Schatten p-norm (see below), but the notation is the same. The special case p = 2 is the Frobenius norm, and p = ∞ yields the maximum norm.
By Dvoretzky's theorem, every finite-dimensional normed vector space has a high-dimensional subspace on which the norm is approximately Euclidean; the Euclidean norm is the only norm with this property. [24] It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25]
For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis, the uniform norm (or sup norm) assigns to real-or complex-valued bounded functions defined on a set the non-negative number
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
1 Notation. 2 Definition. 3 Properties. ... Another use is to find the minimum norm solution to a system of linear equations with multiple solutions. The ...
Using the big O notation an th-order accurate numerical method is notated as | | u − u h | | = O ( h n ) {\displaystyle ||u-u_{h}||=O(h^{n})} This definition is strictly dependent on the norm used in the space; the choice of such norm is fundamental to estimate the rate of convergence and, in general, all numerical errors correctly.