Search results
Results from the WOW.Com Content Network
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:}. where denotes the supremum.
By Dvoretzky's theorem, every finite-dimensional normed vector space has a high-dimensional subspace on which the norm is approximately Euclidean; the Euclidean norm is the only norm with this property. [24] It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25]
The norm (see also Norms) can be used to approximate the optimal norm via convex relaxation. It can be shown that the L 1 {\displaystyle L_{1}} norm induces sparsity. In the case of least squares, this problem is known as LASSO in statistics and basis pursuit in signal processing.
Completeness of the space holds provided that whenever a series of elements from l 2 converges absolutely (in norm), then it converges to an element of l 2. The proof is basic in mathematical analysis , and permits mathematical series of elements of the space to be manipulated with the same ease as series of complex numbers (or vectors in a ...
The L 2 space of square-integrable functions; L 2 norm; The ℓ 2 space of square-summable sequences; L 2 cohomology, a cohomology theory for smooth non-compact manifolds with Riemannian metric; L 2 (n), the family of 2-dimensional projective special linear groups on finite fields.
In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().
Norm (mathematics)#Euclidean norm To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .