Search results
Results from the WOW.Com Content Network
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
[citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth). [2] That is, it is the weight of a kilogram under standard gravity. One kilogram-force is defined as ...
The CGS unit of pressure is the barye (Ba), equal to 1 dyn·cm −2, or 0.1 Pa. Pressure is sometimes expressed in grams-force or kilograms-force per square centimetre ("g/cm 2" or "kg/cm 2") and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units ...
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N: intensive Molar energy: J/mol: Amount of energy present in a system ...
newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J)
Use of the kilogram-force per square centimetre continues primarily due to older pressure measurement devices still in use. This use of the unit of pressure provides an intuitive understanding for how a body's mass, in contexts with roughly standard gravity, can apply force to a scale's surface area, i.e. kilogram-force per square (centi-)metre.