enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.

  3. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude ...

  4. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  5. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    A force couple results from equal and opposite forces, acting on two different points of a rigid body. The sum (resultant) of these forces may cancel, but their effect on the body is the couple or torque T .

  6. Varignon's theorem (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem_(mechanics)

    The theorem states that the torque of a resultant of two concurrent forces about any point is equal to the algebraic sum of the torques of its components about the same point. In other words, "If many concurrent forces are acting on a body, then the algebraic sum of torques of all the forces about a point in the plane of the forces is equal to ...

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium.

  8. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  9. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.