enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The logarithm of an infinite cardinal number κ is defined as the least cardinal number μ such that κ ≤ 2 μ. Logarithms of infinite cardinals are useful in some fields of mathematics, for example in the study of cardinal invariants of topological spaces , though they lack some of the properties that logarithms of positive real numbers possess.

  3. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Cardinal numbers can be defined as follows. Define two sets to have the same size by: there exists a bijection between the two sets (a one-to-one correspondence between the elements). Then a cardinal number is, by definition, a class consisting of all sets of the same size. To have the same size is an equivalence relation, and the cardinal ...

  4. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...

  5. List of large cardinal properties - Wikipedia

    en.wikipedia.org/wiki/List_of_large_cardinal...

    Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V κ satisfies "there is an unbounded class of cardinals satisfying φ".

  6. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .

  7. Large cardinal - Wikipedia

    en.wikipedia.org/wiki/Large_cardinal

    A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal property. Most working set theorists believe that the large cardinal axioms that are currently being considered are consistent with ZFC. [2] These axioms are strong enough to imply the consistency of ZFC.

  8. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  9. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...