enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .

  3. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  4. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    This effect can be quantified through the Stokes's law of sound attenuation. Sound attenuation may also be a result of heat conductivity in the media as has been shown by G. Kirchhoff in 1868. [1] [2] The Stokes-Kirchhoff attenuation formula takes into account both viscosity and thermal conductivity effects.

  5. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.

  6. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The expression for the drag force given by equation is called Stokes' law. When the value of C d {\displaystyle C_{d}} is substituted in the equation ( 5 ), we obtain the expression for terminal speed of a spherical object moving under creeping flow conditions: [ 11 ]

  7. Stokes formula - Wikipedia

    en.wikipedia.org/wiki/Stokes_formula

    Stokes' formula can refer to: Stokes' law for friction force in a viscous fluid. Stokes' law (sound attenuation) law describing attenuation of sound in Newtonian liquids. Stokes' theorem on the integration of differential forms. Stokes' formula (gravity) a formula in geodesy

  8. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Stokes derived the drag around a sphere at very low Reynolds numbers, the result of which is called Stokes' law. [30] In the limit of high Reynolds numbers, the Navier–Stokes equations approach the inviscid Euler equations, of which the potential-flow solutions considered by d'Alembert are solutions. However, all experiments at high Reynolds ...

  9. Stokes equation - Wikipedia

    en.wikipedia.org/wiki/Stokes_equation

    Stokes equation may refer to: the Airy equation the equations of Stokes flow , a linearised form of the Navier–Stokes equations in the limit of small Reynolds number