enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  3. MAX-3SAT - Wikipedia

    en.wikipedia.org/wiki/MAX-3SAT

    If the first of these two equations were equated to "=1" as usual, one could find a proof π by solving a system of linear equations (see MAX-3LIN-EQN) implying P = NP. If z ∈ L, a fraction ≥ (1 − ε) of clauses are satisfied. If z ∉ L, then for a (1/2 − ε) fraction of R, 1/4 clauses are contradicted.

  4. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...

  5. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction...

    An evaluation of the variables is a function from a subset of variables to a particular set of values in the corresponding subset of domains. An evaluation v {\displaystyle v} satisfies a constraint t j , R j {\displaystyle \langle t_{j},R_{j}\rangle } if the values assigned to the variables t j {\displaystyle t_{j}} satisfy the relation R j ...

  6. AC-3 algorithm - Wikipedia

    en.wikipedia.org/wiki/AC-3_algorithm

    AC-3 operates on constraints, variables, and the variables' domains (scopes). A variable can take any of several discrete values; the set of values for a particular variable is known as its domain. A constraint is a relation that limits or constrains the values a variable may have. The constraint may involve the values of other variables.

  7. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...

  8. Quine–McCluskey algorithm - Wikipedia

    en.wikipedia.org/wiki/Quine–McCluskey_algorithm

    For a function of n variables the number of prime implicants can be as large as /, [25] e.g. for 32 variables there may be over 534 × 10 12 prime implicants. Functions with a large number of variables have to be minimized with potentially non-optimal heuristic methods, of which the Espresso heuristic logic minimizer was the de facto standard ...

  9. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    [50] [13] [49] The conditional probability of winning by switching is ⁠ 1/3 / 1/3 + 1/6 ⁠, which is ⁠ 2 / 3 ⁠. [2] The conditional probability table below shows how 300 cases, in all of which the player initially chooses door 1, would be split up, on average, according to the location of the car and the choice of door to open by the host.