Search results
Results from the WOW.Com Content Network
Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).
It was first used primarily to study enzyme-catalyzed reactions. Then the stopped-flow rapidly found its place in almost all biochemistry, biophysics, and chemistry laboratories with a need to follow chemical reactions in the millisecond time scale. In its simplest form, a stopped-flow mixes two solutions.
In the field of computational chemistry, energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
If the object is disk-like, weights may be attached near the rim to reduce the sensed vibration. This is called one-plane dynamic balancing. If the object is cylinder or rod-like, it may be preferable to execute two-plane balancing, which holds one end's spin axis steady, while the other end's vibration is reduced.
is the amplitude of the periodic driving force; if = the system is without a driving force, and ω {\displaystyle \omega } is the angular frequency of the periodic driving force. The Duffing equation can be seen as describing the oscillations of a mass attached to a nonlinear spring and a linear damper.
Electron scattering by isolated atoms and molecules occurs in the gas phase. It plays a key role in plasma physics and chemistry and it's important for such applications as semiconductor physics. Electron-molecule/atom scattering is normally treated by means of quantum mechanics.