enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ( 13 )

  3. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's first law states that: The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse.

  5. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

  6. Axial precession - Wikipedia

    en.wikipedia.org/wiki/Axial_precession

    Precessional movement of Earth. Earth rotates (white arrows) once a day around its rotational axis (red); this axis itself rotates slowly (white circle), completing a rotation in approximately 26,000 years [1] In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational ...

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: Circular orbit: e = 0; Elliptic orbit: 0 < e < 1; Parabolic trajectory: e = 1; Hyperbolic trajectory: e > 1; The eccentricity e ...

  8. Equatorial bulge - Wikipedia

    en.wikipedia.org/wiki/Equatorial_bulge

    Estimates of the Earth's rotation 500 million years ago are around 20 modern hours per "day". The Earth's rate of rotation is slowing down mainly because of tidal interactions with the Moon and the Sun. Since the solid parts of the Earth are ductile, the Earth's equatorial bulge has been decreasing in step with the decrease in the rate of rotation.

  9. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Average altitude of 384,403 kilometres (238,857 mi), elliptical-inclined orbit. Beyond-low Earth orbit (BLEO) and beyond Earth orbit (BEO) are a broad class of orbits that are energetically farther out than low Earth orbit or require an insertion into a heliocentric orbit as part of a journey that may require multiple orbital insertions ...