Search results
Results from the WOW.Com Content Network
The only known powers of 2 with all digits even are 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^6 = 64 and 2^11 = 2048. [11] The first 3 powers of 2 with all but last digit odd is 2^4 = 16, 2^5 = 32 and 2^9 = 512. The next such power of 2 of form 2^n should have n of at least 6 digits.
This method is an efficient variant of the 2 k-ary method. For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2, we take a window of length 3 using the 2 k-ary method algorithm and calculate 1, x 3, x 6, x 12, x 24, x 48, x 49, x 98, x 99, x 198, x 199, x 398.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
It follows that the number of comparators is bounded (+) / ⌊ / ⌋ (+) / (which establishes an exact value for when is a power of 2). Although the absolute number of comparisons is typically higher than Batcher's odd-even sort , many of the consecutive operations in a bitonic sort retain a locality of reference , making implementations more ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The smallest counterexample is for a power of 15, when the binary method needs six multiplications. Instead, form x 3 in two multiplications, then x 6 by squaring x 3, then x 12 by squaring x 6, and finally x 15 by multiplying x 12 and x 3, thereby achieving the desired result with only five multiplications. However, many pages follow ...