Search results
Results from the WOW.Com Content Network
The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .
Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.
For instance, a mixed distribution consisting of very thin Gaussians centred at −99, 0.5, and 2 with weights 0.01, 0.66, and 0.33 has a skewness of about −9.77, but in a sample of 3 has an expected value of about 0.32, since usually all three samples are in the positive-valued part of the distribution, which is skewed the other way.
The standard measure of a distribution's kurtosis, originating with Karl Pearson, [1] is a scaled version of the fourth moment of the distribution. This number is related to the tails of the distribution, not its peak; [2] hence, the sometimes-seen characterization of kurtosis as "peakedness" is incorrect.
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
When the smaller values tend to be farther away from the mean than the larger values, one has a skew distribution to the left (i.e. there is negative skewness), one may for example select the square-normal distribution (i.e. the normal distribution applied to the square of the data values), [1] the inverted (mirrored) Gumbel distribution, [1 ...
The Laplace distribution; The Lévy skew alpha-stable distribution or stable distribution is a family of distributions often used to characterize financial data and critical behavior; the Cauchy distribution, Holtsmark distribution, Landau distribution, Lévy distribution and normal distribution are special cases. The Linnik distribution
In probability and statistics, the skewed generalized "t" distribution is a family of continuous probability distributions. The distribution was first introduced by Panayiotis Theodossiou [1] in 1998. The distribution has since been used in different applications.