Search results
Results from the WOW.Com Content Network
The presence of ethanol can lead to the formations of non-lamellar phases also known as non-bilayer phases. Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-lamellar phases in phospholipids. The formation of non-lamellar phases in phospholipids is not completely understood, but it is significant ...
Each lipid bilayer structure is comparable to lamellar phase lipid organization in biological membranes, in general. In contrast, multilamellar liposomes (MLVs), consist of many concentric amphiphilic lipid bilayers analogous to onion layers, and MLVs may be of variable sizes up to several micrometers.
Lipid molecules in the HII phase pack inversely to the packing observed in the hexagonal I phase described above. This phase has the polar head groups on the inside and the hydrophobic, hydrocarbon tails on the outside in solution. The packing ratio for this phase is larger than one, [1] which is synonymous with an inverse cone packing.
The major types of liposomes are the multilamellar vesicle (MLV, with several lamellar phase lipid bilayers), the small unilamellar liposome vesicle (SUV, with one lipid bilayer), the large unilamellar vesicle (LUV), and the cochleate vesicle. A less desirable form is multivesicular liposomes in which one vesicle contains one or more smaller ...
In multilamellar liposomes, many such lipid bilayer sheets are layered concentrically with water layers in between. Figure 1 Multi-lamellar phase of aqueous lipid dispersions, each white lamella represents a lipid bilayer organization in liposome made by vortex-mixing of dried total lipid extract of spinach thylakoid membranes with distilled water.
More confusingly still, the term microemulsion can refer to the single isotropic phase that is a mixture of oil, water and surfactant, or to one that is in equilibrium with coexisting predominantly oil and/or aqueous phases, or even to other non-isotropic phases. As in the binary systems (water/surfactant or oil/surfactant), self-assembled ...
The solid phase is commonly referred to as a “gel” phase. All lipids have a characteristic temperature at which they undergo a transition from the gel to liquid phase. In both phases the lipid molecules are constrained to the two dimensional plane of the membrane, but in liquid phase bilayers the molecules diffuse freely within this plane.
Increasing the amphiphile concentration beyond the point where lamellar phases are formed would lead to the formation of the inverse topology lyotropic phases, namely the inverse cubic phases, the inverse hexagonal columnar phase (columns of water encapsulated by amphiphiles, (H II) and the inverse micellar cubic phase (a bulk liquid crystal ...