Search results
Results from the WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]
Lamb's theoretical formulations have found substantial practical application, especially in the field of non-destructive testing. The term Rayleigh–Lamb waves embraces the Rayleigh wave, a type of wave that propagates along a single surface. Both Rayleigh and Lamb waves are constrained by the elastic properties of the surface(s) that guide them.
In fluid dynamics, Lamb vector is the cross product of vorticity vector and velocity vector of the flow field, named after the physicist Horace Lamb. [ 1 ] [ 2 ] The Lamb vector is defined as l = u × ω {\displaystyle \mathbf {l} =\mathbf {u} \times {\boldsymbol {\omega }}}
Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time. In fluid dynamics the Morison equation is a semi- empirical equation for the inline force on a body in oscillatory flow.
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia or sometimes as the angular mass.
The moment of inertia is defined as the product of mass of section and the square of the distance between the reference axis and the centroid of the section. Spinning figure skaters can reduce their moment of inertia by pulling in their arms, allowing them to spin faster due to conservation of angular momentum.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
The Wheeler–Feynman absorber theory (also called the Wheeler–Feynman time-symmetric theory), named after its originators, the physicists Richard Feynman and John Archibald Wheeler, is a theory of electrodynamics based on a relativistic correct extension of action at a distance electron particles.