Search results
Results from the WOW.Com Content Network
Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [ 1 ] who later won the Nobel Prize in Physics for his discovery in 1917.
The characteristic X-rays come out at specific angles, and since the angular position for every X-ray spectral line is known and recorded, it is easy to find the sample's composition. A chart for a scan of a Molybdenum specimen is shown in Fig. 2.
X-rays are also emitted by stellar corona and are strongly emitted by some types of nebulae. However, X-ray telescopes must be placed outside the Earth's atmosphere to see astronomical X-rays, since the great depth of the atmosphere of Earth is opaque to X-rays (with areal density of 1000 g/cm 2), equivalent to 10 meters thickness of water. [16]
Wavelength-dispersive X-ray spectroscopy (WDXS or WDS) is a non-destructive analysis technique used to obtain elemental information about a range of materials by measuring characteristic x-rays within a small wavelength range. The technique generates a spectrum in which the peaks correspond to specific x-ray lines and elements can be easily ...
The Siegbahn notation is used in X-ray spectroscopy to name the spectral lines that are characteristic to elements. It was introduced by Manne Siegbahn.. The characteristic lines in X-ray emission spectra correspond to atomic electronic transitions where an electron jumps down to a vacancy in one of the inner shells of an atom.
Moseley's law is an empirical law concerning the characteristic X-rays emitted by atoms. The law had been discovered and published by the English physicist Henry Moseley in 1913–1914. [ 1 ] [ 2 ] Until Moseley's work, "atomic number" was merely an element's place in the periodic table and was not known to be associated with any measurable ...
For spectroscopy, it is generally desirable for a source to cover a broad swath of wavelengths in order to measure a broad region of the absorption spectrum. Some sources inherently emit a broad spectrum. Examples of these include globars or other black body sources in the infrared, mercury lamps in the visible and ultraviolet, and X-ray tubes.
Wilhelm Röntgen discovered and named X-rays. After experimenting with high voltages applied to an evacuated tube on 8 November 1895, he noticed a fluorescence on a nearby plate of coated glass. In one month, he discovered X-rays' main properties. [45]: 307 The last portion of the EM spectrum to be discovered was associated with radioactivity.