enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product of d different vector spaces. [30] A type (n, m) tensor, in the sense defined previously, is also a tensor of order n + m in this more general sense.

  3. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  4. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  5. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    In a finite-dimensional vector space V over a field K with a symmetric bilinear form g : V × V → K (which may be referred to as the metric tensor), there is little distinction between covariant and contravariant vectors, because the bilinear form allows covectors to be identified with vectors. That is, a vector v uniquely determines a ...

  6. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  8. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    where V is a vector bundle on M, V * is its dual and ⊗ is the tensor product of vector bundles. Equivalently, it is a collection of elements T x ∈ V x ⊗p ⊗ (V x *) ⊗q for all points x ∈ M, arranging into a smooth map T : M → V ⊗p ⊗ (V *) ⊗q. Elements T x are called tensors. Often we take V = TM to be the tangent bundle of M.

  9. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    A simple tensor (also called a tensor of rank one, elementary tensor or decomposable tensor [1]) is a tensor that can be written as a product of tensors of the form = where a, b, ..., d are nonzero and in V or V ∗ – that is, if the tensor is nonzero and completely factorizable. Every tensor can be expressed as a sum of simple tensors.