enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  3. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  4. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5] R. Poya, A. J. Gil and R. Ortigosa C++ 2016 0.6.4 / 06.2023 Free MIT License: Fastor is a high performance tensor (fixed multi-dimensional array) library for modern C++. GNU Scientific Library [6] GNU Project C, C++ 1996

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  7. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  8. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...

  9. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or . Concretely, if the dimension n = dim ( V ) {\displaystyle n={\text{dim}}(V)} of V {\displaystyle V} is finite, then, after making a choice of basis , we can view such vector spaces as R n {\displaystyle \mathbb {R} ^{n}} or ...