Ad
related to: losing coolant no overheating pressure light
Search results
Results from the WOW.Com Content Network
The Fukushima Daiichi nuclear disaster in 2011 occurred due to a loss-of-coolant accident. The circuits that provided electrical power to the coolant pumps failed causing a loss-of-core-cooling that was critical for the removal of residual decay heat which is produced even after active reactors are shut down and nuclear fission has ceased.
The high-pressure coolant injection system is the first line of defense in the emergency core cooling system. HPCI is designed to inject substantial quantities of water into the reactor while it is at high pressure so as to prevent the activation of the automatic depressurization, core spray, and low-pressure coolant injection systems.
Under loss of coolant jet pumps provide 10% power similar to boilers. BWR designs operate constantly at about half the primary system pressure of PWR designs while producing the same quantity and quality of steam in a compact system: 1020 psi (7 MPa) reactor vessel pressure, and 288 °C temperature for BWR which is lower than 2240 psi (14.4 MPa ...
On the other hand, if a reactor is designed to operate with no voids at all, a large negative void coefficient may serve as a safety system. A loss of coolant in such a reactor decreases the thermal output, but of course heat that is generated is no longer removed, so the temperature could rise (if all other safety systems simultaneously failed).
The High Pressure Coolant Injection (HPCI) System consists of a pump or pumps that have sufficient pressure to inject coolant into the reactor vessel while it is pressurized. It is designed to monitor the level of coolant in the reactor vessel and automatically inject coolant when the level drops below a threshold.
HOUSTON (AP) — Winter weather brings various hazards that people have to contend with to keep warm and safe. These dangers can include carbon monoxide poisoning, hypothermia and frozen pipes ...
In a loss-of-coolant accident, either the physical loss of coolant (which is typically deionized water, an inert gas, NaK, or liquid sodium) or the loss of a method to ensure a sufficient flow rate of the coolant occurs. A loss-of-coolant accident and a loss-of-pressure-control accident are closely related in some reactors. In a pressurized ...
A loss-of-pressure-control accident (LOPA) is a mode of failure for a nuclear reactor that involves the pressure of the confined coolant falling below specification. [1] Most commercial types of nuclear reactor use a pressure vessel to maintain pressure in the reactor plant.
Ad
related to: losing coolant no overheating pressure light