Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Addition of concentrated sulfuric acid to potassium permanganate gives Mn 2 O 7. [76] Although no reaction may be apparent, the vapor over the mixture will ignite paper impregnated with alcohol. Potassium permanganate and sulfuric acid react to produce some ozone, which has a high oxidizing power and rapidly oxidizes the alcohol, causing it to ...
Potassium permanganate (KMnO 4) is a dark violet colored powder. Its reaction with glycerol (commonly known as glycerin or glycerine) (C 3 H 5 (OH) 3) is highly exothermic, resulting rapidly in a flame, along with the formation of carbon dioxide and water vapour:
A permanganate can oxidize an amine to a nitro compound, [7] [8] an alcohol to a ketone, [9] an aldehyde to a carboxylic acid, [10] [11] a terminal alkene to a carboxylic acid, [12] oxalic acid to carbon dioxide, [13] and an alkene to a diol. [14] This list is not exhaustive. In alkene oxidations one intermediate is a cyclic Mn(V) species: [15]
The Jones oxidation. Jones reagent is a solution prepared by dissolving chromium trioxide in aqueous sulfuric acid. To effect a Jones oxidation, this acidic mixture is then added to an acetone solution of the substrate. Alternatively, potassium dichromate can be used in place of chromium trioxide. The oxidation is very rapid and quite ...
The Kharasch–Sosnovsky reaction is a method that involves using a copper or cobalt salt as a catalyst to oxidize olefins at the allylic position, subsequently condensing a peroxy ester (e.g. tert-Butyl peroxybenzoate) or a peroxide resulting in the formation of allylic benzoates or alcohols via radical oxidation. [1]
The Kornblum–DeLaMare rearrangement is a rearrangement reaction in organic chemistry in which a primary or secondary organic peroxide is converted to the corresponding ketone and alcohol under acid or base catalysis. The reaction is relevant as a tool in organic synthesis and is a key step in the biosynthesis of prostaglandins. [1]
Autoxidation (sometimes auto-oxidation) refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. [1] The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures.