enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...

  3. Southwell plot - Wikipedia

    en.wikipedia.org/wiki/Southwell_plot

    Initially created for stability problems in column buckling, the Southwell method has also been used to determine critical loads in frame and plate buckling experiments. The method is particularly useful for field tests of structures that are likely to be damaged by applying loads near the critical load and beyond, such as reinforced concrete ...

  4. Wood method - Wikipedia

    en.wikipedia.org/wiki/Wood_method

    The Wood method, also known as the Merchant–Rankine–Wood method, is a structural analysis method which was developed to determine estimates for the effective buckling length of a compressed member included in a building frames, both in sway and a non-sway buckling modes. [1] [2] It is named after R. H. Wood.

  5. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    Maximum buckling occurs near the impact end at a wavelength much shorter than the length of the rod, and at a stress many times the buckling stress of a statically loaded column. The critical condition for buckling amplitude to remain less than about 25 times the effective rod straightness imperfection at the buckle wavelength is

  6. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    The slenderness ratio is an indicator of the specimen's resistance to bending and buckling, due to its length and cross section. If the slenderness ratio is less than the critical slenderness ratio, the column is considered to be a short column. In these cases, the Johnson parabola is more applicable than the Euler formula. [5]

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    A column under a centric axial load exhibiting the characteristic deformation of buckling. When subjected to compressive forces it is possible for structural elements to deform significantly due to the destabilising effect of that load. The effect can be initiated or exacerbated by possible inaccuracies in manufacture or construction.

  8. Structural engineering - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering

    The design of a column must check the axial capacity of the element and the buckling capacity. The buckling capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of ...

  9. P-delta effect - Wikipedia

    en.wikipedia.org/wiki/P-Delta_Effect

    In some sense, the P-delta effect is similar to the buckling load of an elastic, small-scale solid column given the boundary conditions of a free end on top and a completely restrained end at the bottom, with the exception that there may exist an invariant vertical load at the top of the column.