Search results
Results from the WOW.Com Content Network
The map labels each pixel of the image with the distance to the nearest obstacle pixel. A most common type of obstacle pixel is a boundary pixel in a binary image. See the image for an example of a Chebyshev distance transform on a binary image. A distance transformation. Usually the transform/map is qualified with the chosen metric.
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
In automated searches for asteroids or Kuiper belt objects, the target moves and will be in one place in one image, and in another place in a reference image made an hour or day later. Thus, image processing algorithms can make the fixed stars in the background disappear, leaving only the target. [ 2 ]
A very simple example can be given between the two colors with RGB values (0, 64, 0) ( ) and (255, 64, 0) ( ): their distance is 255. Going from there to (255, 64, 128) ( ) is a distance of 128. When we wish to calculate distance from the first point to the third point (i.e. changing more than one of the color values), we can do this:
The system uses a deep convolutional neural network to learn a mapping (also called an embedding) from a set of face images to a 128-dimensional Euclidean space, and assesses the similarity between faces based on the square of the Euclidean distance between the images' corresponding normalized vectors in the 128-dimensional Euclidean space.
The U-matrix (unified distance matrix) is a representation of a self-organizing map (SOM) where the Euclidean distance between the codebook vectors of neighboring neurons is depicted in a grayscale image. This image is used to visualize the data in a high-dimensional space using a 2D image. [1]
The Euclidean distance formula is used to find the distance between two points on a plane, which is visualized in the image below. Manhattan distance is commonly used in GPS applications, as it can be used to find the shortest route between two addresses.
An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...