enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.

  3. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Crossed rectangle: an antiparallelogram whose sides are two opposite sides and the two diagonals of a rectangle, hence having one pair of parallel opposite sides. Crossed square : a special case of a crossed rectangle where two of the sides intersect at right angles.

  5. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A kite is an orthodiagonal quadrilateral in which one diagonal is a line of symmetry.The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals.

  6. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.

  7. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  8. Viewer's guide to the new College Football Playoff

    www.aol.com/sports/viewers-guide-college...

    After years of waiting for a bigger and better College Football Playoff, the moment has finally arrived.The bracket is set and the games are here. The inaugural 12-team field has a few surprises ...

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry.