enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    Such angles are called a linear pair of angles. [15] However, supplementary angles do not have to be on the same line and can be separated in space. For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary.

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent. Proposition 1.27 of Euclid's Elements , a theorem of absolute geometry (hence valid in both hyperbolic and Euclidean Geometry ), proves that if the angles of a pair of alternate angles of a transversal are congruent ...

  4. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Angles ∠ ADB and ∠ ADC form a linear pair, that is, they are adjacent supplementary angles. Since supplementary angles have equal sines, Since supplementary angles have equal sines, sin ⁡ ∠ A D B = sin ⁡ ∠ A D C . {\displaystyle {\sin \angle ADB}={\sin \angle ADC}.}

  5. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  6. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.

  7. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    It is positive definite: for all vectors x, x ⋅ x ≥ 0 , with equality if and only if x = 0. An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) inner product. A vector space equipped with such an inner product is known as a (real) inner product space.

  8. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    The linear dependency of a sequence of vectors does not depend of the order of the terms in the sequence. This allows defining linear independence for a finite set of vectors: A finite set of vectors is linearly independent if the sequence obtained by ordering them is linearly independent. In other words, one has the following result that is ...

  9. Linear separability - Wikipedia

    en.wikipedia.org/wiki/Linear_separability

    In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane ) by thinking of one set of points as being colored blue and the other set of points as being colored red.