Search results
Results from the WOW.Com Content Network
For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b 2. For large Betti numbers b 2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many ...
A differentiable manifold (of class C k) consists of a pair (M, O M) where M is a second countable Hausdorff space, and O M is a sheaf of local R-algebras defined on M, such that the locally ringed space (M, O M) is locally isomorphic to (R n, O). In this way, differentiable manifolds can be thought of as schemes modeled on R n.
Calculus on Manifolds is a brief monograph on the theory of vector-valued functions of several real variables (f : R n →R m) and differentiable manifolds in Euclidean space. . In addition to extending the concepts of differentiation (including the inverse and implicit function theorems) and Riemann integration (including Fubini's theorem) to functions of several variables, the book treats ...
The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...
Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. [1]
Any differentiable manifold is a diffeological space by considering its maximal atlas (i.e., the plots are all smooth maps from open subsets of to the manifold); its D-topology recovers the original manifold topology. With this diffeology, a map between two smooth manifolds is smooth if and only if it is differentiable in the diffeological sense.
SageManifolds deals with differentiable manifolds of arbitrary dimension. The basic objects are tensor fields and not tensor components in a given vector frame or coordinate chart. In other words, various charts and frames can be introduced on the manifold and a given tensor field can have representations in each of them.
A regular homotopy between two immersions f and g from a manifold M to a manifold N is defined to be a differentiable function H : M × [0,1] → N such that for all t in [0, 1] the function H t : M → N defined by H t (x) = H(x, t) for all x ∈ M is an immersion, with H 0 = f, H 1 = g. A regular homotopy is thus a homotopy through immersions.