enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. de Rham theorem - Wikipedia

    en.wikipedia.org/wiki/De_Rham_theorem

    The key part of the theorem is a construction of the de Rham homomorphism. [1] Let M be a manifold. Then there is a map : () from the space of differential p-forms to the space of smooth singular p-cochains given by

  3. Calculus on Manifolds (book) - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_Manifolds_(book)

    Calculus on Manifolds is a brief monograph on the theory of vector-valued functions of several real variables (f : R n →R m) and differentiable manifolds in Euclidean space. . In addition to extending the concepts of differentiation (including the inverse and implicit function theorems) and Riemann integration (including Fubini's theorem) to functions of several variables, the book treats ...

  4. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    A differentiable manifold (of class C k) consists of a pair (M, O M) where M is a second countable Hausdorff space, and O M is a sheaf of local R-algebras defined on M, such that the locally ringed space (M, O M) is locally isomorphic to (R n, O). In this way, differentiable manifolds can be thought of as schemes modeled on R n.

  5. Generalized Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Generalized_Poincaré...

    The cases n = 1 and 2 have long been known by the classification of manifolds in those dimensions. For a PL or smooth homotopy n-sphere, in 1960 Stephen Smale proved for n ≥ 7 {\displaystyle n\geq 7} that it was homeomorphic to the n -sphere and subsequently extended his proof to n ≥ 5 {\displaystyle n\geq 5} ; [ 3 ] he received a Fields ...

  6. Diffeology - Wikipedia

    en.wikipedia.org/wiki/Diffeology

    Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the differential structure from to the ...

  7. Exterior calculus identities - Wikipedia

    en.wikipedia.org/wiki/Exterior_calculus_identities

    That is, differentiable manifolds that can be differentiated enough times for the purposes on this page. , denote one point on each of the manifolds. The boundary of a manifold is a manifold , which has dimension .

  8. Differential structure - Wikipedia

    en.wikipedia.org/wiki/Differential_structure

    For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b 2. For large Betti numbers b 2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many ...

  9. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...