enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.

  3. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Historically, the term 'free energy' has been used for either quantity. In physics, free energy most often refers to the Helmholtz free energy, denoted by A (or F), while in chemistry, free energy most often refers to the Gibbs free energy. The values of the two free energies are usually quite similar and the intended free energy function is ...

  4. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    In kinetic theory of gases, the mean free path is the average distance traveled by a molecule, or a number of molecules per volume, before they make their first collision. Let σ {\displaystyle \sigma } be the collision cross section of one molecule colliding with another.

  5. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum.

  6. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    Free energy In general terms, the free energy change (ΔG) of a reaction determines whether a chemical change will take place, but kinetics describes how fast the reaction is. A reaction can be very exothermic and have a very positive entropy change but will not happen in practice if the reaction is too slow.

  7. Free particle - Wikipedia

    en.wikipedia.org/wiki/Free_particle

    A free particle with mass in non-relativistic quantum mechanics is described by the free Schrödinger equation: (,) = (,) where ψ is the wavefunction of the particle at position r and time t . The solution for a particle with momentum p or wave vector k , at angular frequency ω or energy E , is given by a complex plane wave :

  8. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  9. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    Chemical energy is the kind of potential energy "stored" in chemical bonds and is studied in chemistry. [24] Nuclear energy is energy stored in interactions between the particles in the atomic nucleus and is studied in nuclear physics. [25] Electromagnetic energy is in the form of electric charges, magnetic fields, and photons.