enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are then useful because they provide relations between the roots without having to compute them. For polynomials over a commutative ring that is not an integral domain, Vieta's formulas are only valid when a n {\displaystyle a_{n}} is not a zero-divisor and P ( x ) {\displaystyle P(x)} factors as a n ( x − r 1 ) ( x − r 2 ) …

  3. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    This is indeed true and it follows from Vieta's formulas. It also follows from Vieta's formulas, together with the fact that we are working with a depressed quartic, that r 1 + r 2 + r 3 + r 4 = 0. (Of course, this also follows from the fact that r 1 + r 2 + r 3 + r 4 = −s + s.)

  4. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle formula from trigonometry leads to a generalized formula, discovered by Leonhard Euler, that has Viète's formula as a special case. Many similar formulas involving nested ...

  5. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .

  6. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    By Vieta's formulas, s 0 is known to be zero in the case of a depressed cubic, and − ⁠ b / a ⁠ for the general cubic. So, only s 1 and s 2 need to be computed. They are not symmetric functions of the roots (exchanging x 1 and x 2 exchanges also s 1 and s 2 ), but some simple symmetric functions of s 1 and s 2 are also symmetric in the ...

  7. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    Vieta's formulas are simpler in the case of monic polynomials: The i th elementary symmetric function of the roots of a monic polynomial of degree n equals (), where is the coefficient of the (n−i) th power of the indeterminate.

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Vieta's formulas ; Vietoris–Begle mapping theorem (algebraic topology) Vinogradov's theorem (number theory) Virial theorem (classical mechanics) Vitali convergence theorem (measure theory) Vitali covering theorem (measure theory) Vitali theorem (measure theory) Vitali–Hahn–Saks theorem (measure theory) Viviani's theorem (Euclidean geometry)

  9. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    Replace some a i by a variable x in the formulas, and obtain an equation for which a i is a solution. Using Vieta's formulas, show that this implies the existence of a smaller solution, hence a contradiction. Example. Problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a 2 + b 2. Prove that ⁠ a 2 + b 2 / ab + 1 ...