Search results
Results from the WOW.Com Content Network
Symmetric-key encryption: the same key is used for both encryption and decryption. Symmetric-key algorithms [a] are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. [1]
Public key transport keys are the public keys of asymmetric key pairs that are used to encrypt keys using a public key algorithm. These keys are used to establish keys (e.g., key wrapping keys, data encryption keys or MAC keys) and, optionally, other keying material (e.g., Initialization Vectors). Symmetric key agreement key
In symmetric key cryptography, both parties must possess a secret key which they must exchange prior to using any encryption.Distribution of secret keys has been problematic until recently, because it involved face-to-face meeting, use of a trusted courier, or sending the key through an existing encryption channel.
A key can directly be generated by using the output of a Random Bit Generator (RBG), a system that generates a sequence of unpredictable and unbiased bits. [10] A RBG can be used to directly produce either a symmetric key or the random output for an asymmetric key pair generation.
Because asymmetric key algorithms are nearly always much more computationally intensive than symmetric ones, it is common to use a public/private asymmetric key-exchange algorithm to encrypt and exchange a symmetric key, which is then used by symmetric-key cryptography to transmit data using the now-shared symmetric key for a symmetric key ...
Symmetric key cryptography—compute a ciphertext decodable with the same key used to encode (e.g., AES) Public-key cryptography—compute a ciphertext decodable with a different key used to encode (e.g., RSA) Digital signatures—confirm the author of a message; Mix network—pool communications from many users to anonymize what came from whom
Key exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. In the Diffie–Hellman key exchange scheme, each party generates a public/private key pair and distributes the public key.
Type 1 encryption algorithms (1 C, 4 P) ... High-dimensional quantum key distribution; ... Symmetric-key algorithm; T.