Search results
Results from the WOW.Com Content Network
Steel with a high carbon content will reach a much harder state than steel with a low carbon content. Likewise, tempering high-carbon steel to a certain temperature will produce steel that is considerably harder than low-carbon steel that is tempered at the same temperature. The amount of time held at the tempering temperature also has an effect.
Martensitic stainless steel is a type of stainless steel alloy that has a martensite crystal structure. It can be hardened and tempered through aging and heat treatment. It can be hardened and tempered through aging and heat treatment.
Martensite in AISI 4140 steel 0.35% carbon steel, water-quenched from 870 °C. Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. [1]
Only steel that is high in carbon can be hardened and tempered. If a metal does not contain the necessary quantity of carbon, then its crystalline structure cannot be broken, and therefore the physical makeup of the steel cannot be altered. Frequently, the term "hardening" is associated with tempered steel. Both processes are used hand in hand ...
420HC (420C) is a higher carbon content 420 stainless steel. The HC stands for "high carbon" and it can be brought to a higher hardness than regular 420 and should not be mistaken for it. Buck Knives, Gerber Knives and Leatherman use 420HC extensively. [7] 420A (420J1) and 420B (420J2) are economical, highly corrosion-resistant stainless steel ...
The tempering colors can be used to judge the final properties of the tempered steel. Very hard tools are often tempered in the light to the dark straw range, whereas springs are often tempered to the blue. However, the final hardness of the tempered steel will vary, depending on the composition of the steel.
The addition of large amounts of nickel and chromium needed for corrosion resistance in stainless steels means that traditional hardening and tempering methods are not effective. However, precipitates of chromium, copper, or other elements can strengthen the steel by similar amounts in comparison to hardening and tempering.
To inhibit corrosion, at least 11% chromium can be added to steel so that a hard oxide forms on the metal surface; this is known as stainless steel. Tungsten slows the formation of cementite , keeping carbon in the iron matrix and allowing martensite to preferentially form at slower quench rates, resulting in high-speed steel .