enow.com Web Search

  1. Ads

    related to: properties of hyperbolic geometry examples worksheet pdf class

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds). After the proof of the Geometrisation ...

  3. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  4. Order-5 cubic honeycomb - Wikipedia

    en.wikipedia.org/wiki/Order-5_cubic_honeycomb

    In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb , alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.

  5. Arithmetic hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_hyperbolic_3...

    The Weeks manifold is the hyperbolic three-manifold of smallest volume [3] and the Meyerhoff manifold is the one of next smallest volume. The complement in the three-sphere of the figure-eight knot is an arithmetic hyperbolic three-manifold [4] and attains the smallest volume among all cusped hyperbolic three-manifolds. [5]

  6. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    In fact the quantity (A,B) C is just the hyperbolic distance p from C to either of the points of contact of the incircle with the adjacent sides: for from the diagram c = (a – p) + (b – p), so that p = (a + b – c)/2 = (A,B) C. [7] The Euclidean plane is not hyperbolic, for example because of the existence of homotheties.

  7. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  8. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...

  9. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Two-dimensional hyperbolic surfaces can also be understood according to the language of Riemann surfaces. According to the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups.

  1. Ads

    related to: properties of hyperbolic geometry examples worksheet pdf class