Search results
Results from the WOW.Com Content Network
The definition given below is for the intersection number of divisors on a nonsingular variety X. 1. The only intersection number that can be calculated directly from the definition is the intersection of hypersurfaces (subvarieties of X of codimension one) that are in general position at x.
An alternative definition of the intersection number of a graph is that it is the smallest number of cliques in (complete subgraphs of ) that together cover all of the edges of . [ 1 ] [ 12 ] A set of cliques with this property is known as a clique edge cover or edge clique cover , and for this reason the intersection number is also sometimes ...
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
Since André Weil's initial definition of intersection numbers, around 1949, there had been a question of how to provide a more flexible and computable theory, which Serre sought to address. In 1958, Serre realized that classical algebraic-geometric ideas of multiplicity could be generalized using the concepts of homological algebra .
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and the distance between v and w.
From a spatial point of view, nearness (a.k.a. proximity) is considered a generalization of set intersection.For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in).
Let be a set and a nonempty family of subsets of ; that is, is a subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.