Search results
Results from the WOW.Com Content Network
Long distance HVDC lines carrying hydroelectricity from Canada's Nelson River to this converter station where it is converted to AC for use in southern Manitoba's grid. A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. [1]
Also, Kirchhoff's circuit laws state that in any DC circuit, the sum of the voltage drops across each component of the circuit is equal to the supply voltage. Consider a direct-current circuit with a nine-volt DC source; three resistors of 67 ohms, 100 ohms, and 470 ohms; and a light bulb—all connected in series.
The equations and their solutions are applicable from 0 Hz (i.e. direct current) to frequencies at which the transmission line structure can support higher order non-TEM modes. [2]: 282–286 The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time.
Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (AC) or direct current (DC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.
The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: [6]: 38 Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case.
In an electrical or electronic circuit or power system part of the energy in play is dissipated by unwanted effects, including energy lost by unwanted heating of resistive components (electricity is also used for the intention of heating, which is not a loss), the effect of parasitic elements (resistance, capacitance, and inductance), skin effect, losses in the windings and cores of ...
Any stationary voltage or current waveform can be decomposed into a sum of a DC component and a zero-mean time-varying component; the DC component is defined to be the expected value, or the average value of the voltage or current over all time. Although DC stands for "direct current", DC often refers to "constant polarity".
where I is the current flowing in the conductor and R is the resistance of the conductor. With I in amperes and R in ohms, the calculated power loss is given in watts. Joule heating has a coefficient of performance of 1.0, meaning that every 1 watt of electrical power is converted to 1 Joule of heat. Therefore, the energy lost due to copper ...