Search results
Results from the WOW.Com Content Network
Schematic cross section of a pressurized caisson. In geotechnical engineering, a caisson (/ ˈ k eɪ s ən,-s ɒ n /; borrowed from French caisson 'box', from Italian cassone 'large box', an augmentative of cassa) is a watertight retaining structure [1] used, for example, to work on the foundations of a bridge pier, for the construction of a concrete dam, [2] or for the repair of ships.
[citation needed] The design typically consists of a large volume caisson based on the sea floor merging into a monolithic structure, which is offering the base for the deck. The single main leg is surrounded by an outer breaker wall perforated with so called Jarlan holes. This wall is intended to break up waves, thus reducing their forces.
Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC). Waves are generated primarily by wind passing over the sea's surface and also by tidal forces, temperature variations, and other factors.
Marine energy or marine power (also sometimes referred to as ocean energy, ocean power, or marine and hydrokinetic energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion.
For a depth of four kilometres, the wave speed, , is about 200 metres per second, but for the first baroclinic mode in the ocean, a typical phase speed would be about 2.8 m/s, causing an equatorial Kelvin wave to take 2 months to cross the Pacific Ocean between New Guinea and South America; for higher ocean and atmospheric modes, the phase ...
A former Playboy model killed herself and her 7-year-old son after jumping from a hotel in Midtown New York City on Friday morning. The New York Post reports that 47-year-old Stephanie Adams ...
Waves can occur on the thermocline, causing the depth of the thermocline as measured at a single location to oscillate (usually as a form of seiche). Alternately, the waves may be induced by flow over a raised bottom, producing a thermocline wave which does not change with time, but varies in depth as one moves into or against the flow.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.