enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  3. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    The Automatic Local Density Clustering Algorithm (ALDC) is an example of the new research focused on developing automatic density-based clustering. ALDC works out local density and distance deviation of every point, thus expanding the difference between the potential cluster center and other points.

  4. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    When clustering text databases with the cover coefficient on a document collection defined by a document by term D matrix (of size m×n, where m is the number of documents and n is the number of terms), the number of clusters can roughly be estimated by the formula where t is the number of non-zero entries in D. Note that in D each row and each ...

  5. Key clustering - Wikipedia

    en.wikipedia.org/wiki/Key_clustering

    Key or hash function should avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to skyrocket, even if the load factor is low and collisions are infrequent. The popular multiplicative hash [1] is claimed to have particularly poor clustering behaviour. [2]

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering was first invented in 1950 by Paul Lazarsfeld for clustering multivariate discrete data, in the form of the latent class model. [ 41 ] In 1959, Lazarsfeld gave a lecture on latent structure analysis at the University of California-Berkeley, where John H. Wolfe was an M.A. student.

  7. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  8. Medoid - Wikipedia

    en.wikipedia.org/wiki/Medoid

    Medoid-based clustering algorithms can be employed to partition large amounts of text into clusters, with each cluster represented by a medoid document. This technique helps in organizing, summarizing, and retrieving information from large collections of documents, such as in search engines, social media analytics and recommendation systems.

  9. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    Different methods for correlation clustering of this type are discussed in [12] and the relationship to different types of clustering is discussed in. [13] See also Clustering high-dimensional data. Correlation clustering (according to this definition) can be shown to be closely related to biclustering. As in biclustering, the goal is to ...