Search results
Results from the WOW.Com Content Network
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure. In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system . When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery , where it is most commonly measured.
Increase hydrostatic pressure in vessels: left ventricular heart failure, Decrease oncotic pressure in blood vessels: Cirrhosis (Cirrhosis leads to hypoalbuminemia and decreasing of colloid oncotic pressure in plasma that causes edema) Nephrotic syndrome (also due to hypoalbuminemia caused by proteinuria). Malnutrition (hypoalbuminism)
Thus, the difference in protein concentration would produce a flow of fluid into the vessel at the venous end equivalent to 28 − 3 = 25 mmHg of hydrostatic pressure. The total oncotic pressure present at the venous end could be considered as +25 mmHg. [citation needed]
Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. If the blood viscosity increases (gets thicker), the result is an increase in arterial pressure.
Turgor pressure within the stomata regulates when the stomata can open and close, which plays a role in transpiration rates of the plant. This is also important because this function regulates water loss within the plant. Lower turgor pressure can mean that the cell has a low water concentration and closing the stomata would help to preserve water.
Distension of the vessels due to increased blood pressure is a fundamental stimulus for muscle contraction in arteriolar walls. As a consequence, microcirculation blood flow remains constant despite changes in systemic blood pressure. This mechanism is present in all tissues and organs of the human body.
Blood vessels function to transport blood to an animal's body tissues. In general, arteries and arterioles transport oxygenated blood from the lungs to the body and its organs, and veins and venules transport deoxygenated blood from the body to the lungs. Blood vessels also circulate blood throughout the circulatory system.