Ads
related to: properties of hyperbolic geometry examples worksheet free download excelkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...
The sum of the angles of a quadrilateral in hyperbolic geometry is always less than 4 right angles (see Lambert quadrilateral). Also in hyperbolic geometry there are no equidistant lines (see hypercycles). This all has influences on the coordinate systems. There are however different coordinate systems for hyperbolic plane geometry.
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
On the other hand the Nash embedding theorem implies that hyperbolic n-space can be isometrically embedded into some Euclidean space of larger dimension (5 for the hyperbolic plane by the Nash embedding theorem). When isometrically embedded to a Euclidean space every point of a hyperbolic space is a saddle point.
In fact the quantity (A,B) C is just the hyperbolic distance p from C to either of the points of contact of the incircle with the adjacent sides: for from the diagram c = (a – p) + (b – p), so that p = (a + b – c)/2 = (A,B) C. [7] The Euclidean plane is not hyperbolic, for example because of the existence of homotheties.
An interesting example is the modular group = (): it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group).
Ads
related to: properties of hyperbolic geometry examples worksheet free download excelkutasoftware.com has been visited by 10K+ users in the past month