Search results
Results from the WOW.Com Content Network
In TCP/IP, routers operate within the Internet layer, while the transmission rate is handled by the endpoints at the transport layer. Congestion may be handled only by the transmitter, but since it is known to have happened only after a packet was sent, there must be an echo of the congestion indication by the receiver to the transmitter.
The TCP congestion-avoidance algorithm is the primary basis for congestion control in the Internet. [ 2 ] [ 3 ] [ 4 ] Per the end-to-end principle , congestion control is largely a function of internet hosts , not the network itself.
TCP Vegas is a TCP congestion avoidance algorithm that emphasizes packet delay, rather than packet loss, as a signal to help determine the rate at which to send packets. It was developed at the University of Arizona by Lawrence Brakmo and Larry L. Peterson and introduced in 1994.
Networks use congestion control and congestion avoidance techniques to try to avoid collapse. These include: exponential backoff in protocols such as CSMA/CA in 802.11 and the similar CSMA/CD in the original Ethernet, window reduction in TCP, and fair queueing in devices such as routers and network switches.
An Internet router typically maintains a set of queues, one or more per interface, that hold packets scheduled to go out on that interface. Historically, such queues use a drop-tail discipline: a packet is put onto the queue if the queue is shorter than its maximum size (measured in packets or in bytes), and dropped otherwise.
When a router wants to signal congestion to the sender, it adds a bit in the header of packets sent. When a packet arrives at the router, the router calculates the average queue length for the last (busy + idle) period plus the current busy period. (The router is busy when it is transmitting packets, and idle otherwise). When the average queue ...
Nagle's algorithm is a means of improving the efficiency of TCP/IP networks by reducing the number of packets that need to be sent over the network. It was defined by John Nagle while working for Ford Aerospace. It was published in 1984 as a Request for Comments (RFC) with title Congestion Control in IP/TCP Internetworks in RFC 896.
AIMD combines linear growth of the congestion window when there is no congestion with an exponential reduction when congestion is detected. Multiple flows using AIMD congestion control will eventually converge to an equal usage of a shared link. [ 1 ]